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MICROWAVE LABORATORY: MULTIFERROIC MATERIALS AND MICROWAVE DEVICES

 Perfect absorber is a material which absorbs all the incident radiation at the operating

frequency while minimizing the transmission and reflection.

 Metamaterials can be used to make EM absorber by engineering the complex permittivity and

permeability.

 Advantageous over the conventional absorbers as metamaterial absorbers can be polarization

insensitive, wide angle receptive and can have small size and less thickness.
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 Maxwell equations are form-invariant under coordinate transformation (CT) and the

electromagnetic (em) waves follow the geodesics of the medium are the prime facts

based on which transformation electromagnetics (T-E) work.

 Using CT, the geodesics of the spaces are distorted and the em wave flows through

the distorted geodesic.

 Electromagnetically speaking, the distorted geodesic can be equated to a new
medium with permittivity () and permeability (μ) values different from the
undistorted space.

 Devices such as cloak, hyperlenses, beam steerer, wave concentrator, field rotators,
lenses like flat lens, Lunberg lens, etc. are realised.

 In electromagnetics, the theoretically proposed devices are achieved using
metamaterials (MMs) and photonic crystals (PhCs).

 The major drawback of the T-E is the fabrication of MMs (or the arrangement of
PhCs) according the desired application based on ε and μ.

 The application of T-E has been extended to various fields such as acoustics,
acousto-optics, heat flow, hydrodynamics, seismology, etc.

 Transformation optics and transformation acoustics are the mathematical tools that simplify the design and modelling of optical and 
acoustical devices by alternating the coordinate system. 

 These techniques are drawn on a correspondence between coordinate transformation and materials parameters. 

 Complex artificial materials known as Metamaterials are used to produce transformation in optical and acoustical space.
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Transformation Optics for Microwave Applications

Temporal Photonic Crystal (TPhC)

Transformation Optics and Transformation Acoustics

 Photonic Crystals are periodic arrangements of different
media with varying electrical permittivities.

 The macroscopic spatial periodicity, like periodic
arrangements of atoms or molecule in crystal lattice that
results in electronic band gaps, give rise to photonic band
gap.

 Depending on the directional periodicity photonic crystals
are of three types 1D, 2D and 3D.

 Photonic band gaps (PBG) block electromagnetic waves of
certain wavelengths. This gives us leverage to control the
propagation of light in certain directions in photonic crystals.

 Temporal Photonic Crystal

Schematic diagram of plane wave  incident on
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 Temporal Photonic Crystals (TPhC), unlike photonic crystals (PhC), have time
dependent electrical permittivity (t). The dynamic interface and bulk of a
dielectric medium influence the reflection and transmission of incident
electromagnetic wave (EMW).

 Similar to frequency gap or band gap in PC, we expect a k-gap in TPC.

 Reflected and transmitted EMW have upshifted frequency than incident.

 Dynamical electrical permittivity system can produce pair of photons from
vacuum states (analogous to Casimir Effect).

 Self phase modulation of a plane EMW due to decreasing refractive index
w.r.t. time exhibit Unruh effect like phenomenon.

1D, 2D and 3D photonic crystals; John D Joannopolous et. al., 

Molding of light 

 Photonic Crystal (PhC)

Band gap in 1D photonic crystal.

The circular em wave produced by the point

converted charge is into a Fermat spiral (FS)

wave.

FS wave is realised using a PhC system with

two different dielectric Q1 and Q2 as shown in

figure
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disk.

 Beam Steering using Fermat spiral configuration

 A point charge placed in a 2-dimensional (2D) isotropic space will produce

circular wavefront. By converting the surrounding space with required ε and

μ, circular wavefront can be modified as Fermat spiral (FS) wave.

 A point charge in 2D could be interpolated to a line charge in 3D and the T-E

medium could be constructed as a disk with positive and negative medium

planes connected by a knot.

 By rotating the disc in the desired fashion, beam can be steered at all

directions and desired antenna radiation (bi-directional or dipolar) can be

obtained (antenna switching).

 Near field (NF) producing and magnifying media in sub-diffraction limit

 A flat lens, that could reduce the intensity of the incoming em wave and

could emanate a near field wave is constructed using rectangular

transformation (RT) and placed inside PEC for focusing (named as RT-P

medium)

 This will be an alternate to metalenses and hyperlenses, for magnification of

the closely placed em sources

 The NF T-E medium with highly anisotropic ε and μ can be replaced by

achieving an em media (like near isotropic bilayer) using reduced parametric

T-E approach (named as RT(r)-P medium)

 For practical realisation a discrete medium (DM) is constructed, simulated

and verified that it behaves as RT(r)
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 Transformation Optics

 In EM system, the magnetic field vector (B), the electric
displacement vector (D) and Poynting vector (S) transform in
a certain way in order to preserve the form of the Maxwell's
equations.

 Since the Maxwell's equation retain the same form under
coordinate transformation, it is the successive value of
permittivity and permeability that change over time.

 Transformation Acoustics 

 The same idea of transformation can be applied to acoustical 
waves where mass density tensor and bulk modulus are the 
associated parameter to coordinate transformation. 

 Any manipulation of sound fields that can be described by a 
coordinate transformation can be realized through complex 
acoustic materials defined by the transformation itself.
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Reflection and Transmission from 

Side 1(Side 2) 

 Design comprises of metal-dielectric-metal

configuration with squares and strips.

Contrary to most of the metamaterial absorbers which uses a complete metallic film

on one side of the substrate, the proposed absorber utilizes metallic patterns on both

the sides enabling broadband absorption from both incident directions.

The metallic patterns are made of copper with thickness of 0.034 mm and dielectric

layer is FR-4 with a thickness of 1.5 mm and dielectric constant of 4.3.

Optimized design gives Absorption, A=1-R-T

A1 >90% from 13.38 GHz to 14.4 GHz (bandwidth of 1.02 GHz)

A2 > 90% from 13. 40 GHz to 14.25 GHz (bandwidth of 0.85 GHz)

 The two conditions for perfect absorption, are minimum

reflection implies impedance matching with the surroundings

and minimum transmission suggests a large loss in the

structure which is indicated by a positive value of the

imaginary part of the refractive index in the effective

refractive index spectrum.

 From13. 40 GHz to 14.25 GHz impedance values are in

between the range 0.56 and 1.4 imaginary part of refractive

index values are in between 2.71 and 4.61.

 Microwave experiment is carried out on the fabricated
sample using free space method with Ku-band (12 GHz to 18
GHz) horn antennas and a network analyser (N5230A).

 The fabricated metamaterial board is kept between the two
horn antennas.

 Reflection measurements are normalized with respect to a
reference metal and transmission measurements are
normalized with respect to free space .

 Due to the rotational symmetry of the design the proposed
absorber exhibits polarization insensitivity.

 For TE polarization, A1>90% from 13.37 GHz to 14.38 GHz
(bandwidth of 1.01 GHz) and A2>90% from 13.30 GHz to 14.20 GHz
(bandwidth of 0.9 GHz).

 For TM polarization, A1>90% from 13.4 GHz to 14.37 GHz
(bandwidth of 0.97 GHz) and A2>90% from 13.29 GHz to 14.20 GHz
(bandwidth of 0.91 GHz)

 Multiferroics exhibit more than one primary ferroic ordering
(ferromagnetism, –electricity, –elasticity or –toroidicity) in the same
phase. The expression is extended to include non-primary orderings
(antiferromagnetism) as well as ferroic composites.

 BiFeO3 (BFO) is a single phase mutliferroic with rhombohedrally
distorted perovskite cells (R3c). Ferroelectric (below Tc ~ 830°C) and
antiferromagnetic (AFM) G-type (below TN ~ 370°C with weak
ferromagnetism).

 Major drawbacks – relatively high leakage current – induced by Fe2+ to
Fe3+ e-hopping through oxygen vacancies. Difficult to synthesis pure
single-phased BFO – therm. stability of Fe2+ comparable to Fe3+ (unstable
perovskite phase). Extremely high coercive field – demands large bipolar
switching. Realisation of a large polarisation in bulk BFO still remains a
challenge.

 Structural distortions: Large displacement of Bi3+ ([111] relative to the
FeO6 octahedra (stereochemical activity of the Bi3+ 6s2 lone pair es) –
Spontaneous ferroelectric polarization (<111>). Each Fe3+ spin is
surrounded by six antiparallel spins on the nearest Fe (G-type AFM).
Magnetic moments/spins couple AFMlly between neighbouring and
ferromagnetically within pseudocubic (111) planes.

(Spaldin, 2019; Yang, 2015: and McKinstry, 2018) and (Leist,

2010; and Feitas, 2013)

 AFM spin structure is modified by a long-range (~620 Å periodicity)
modulation leading to a 'spiral modulated spin structure' – cancellation
of macroscopic magnetization.

 AFM moments are perpendicular to the <111> – the symmetry permits
a canting of the AFM moments between neighbouring planes - a weak
ferromagnetic moment (Dzyaloshinskii–Moriya). AFM plane – always
perpendicular to the ferroelectric polarization (intrinsic coupling).

 Spiral spin modulation of the canted-AFM spin led to 
the cancellation of the spontaneous, macroscopic 
magnetisation

 How to suppress the spiral spin modulation?

 Solid state solutions: Alloy BiFeO3 with other
perovskite ABO3 materials (forming pseudo-binary
systems) such as BaTiO3, PbZrO3, or PbTiO3.

 PbTiO3 has tetragonal structure (P4mm), very good
ferroelectric, piezoelectric perovskite (Pb2+ classical
lone pairs), and induces chemically ordered micro-
regions where spiral spin modulation decreases.

 Helps in phase stabilisation, in strong magnetoelectric
coupling (α33 ) and in achieving large tetrogonality
(~20%) near MPB.

 BiFeO3 – PbTiO3 (BF–PT)

 In BF–PT, the rhombohedral BiFeO3 is associated with
the magnetic properties whereas the tetragonal
PbTiO3 is associated with ferroelectric/piezoelectric
properties.

 Phase diagram – coexistence of rhombohedral and
tetrogonal in the MPB [MPB ~ x (PbTiO3) = 0.20 to
0.45]. Claims of orthorhombic/monoclinic phase (Cc)
in MPB.

Freitas, 2013; Leist, 2009 and 2010; Martin, 2010; 

McKinstry, 2018; Narayan, 2018; Spaldin, 2019; and Yang, 

2015

Phovoltaic Effect on La Doped BiFeO3 Films

 Reduced direct Eg increases

absorption; reduced indirect Eg

decreases radiative recombination

rate.

 For x = 0.25, Pr = 25 μC/cm2

 For x = 0.30, P-E loop shows change in

shape with repressed Pr trademark sign

of phase evolution.

La (%) VOC (V) JSC

(μA/cm2)

0 -0.47 3.53

5 -0.47 1.17

10 -0.31 0.82

15 -0.52 4.05

20 -0.92 3.24

25 -1.30 2.02

30 -0.189 0.16


